

The Path to FTQC

Unlocking the Future with Fault-Tolerant Quantum Computing

Fault-Tolerant Quantum Computing ensures reliable computations by correcting errors in quantum systems.

Building Blocks

Qubit

Just as classical computing rely on bits for its operations, quantum compting is based on quantum bits, or qubits.

Superposition

Until it is measured, the qubit is a superposed state, with a potential value of both 0 and 1.

Entanglement

Two particles — and so two qubits — can be linked together so the state of one qubit can be deduced from the measure of the other.

The Challenge of Quantum Error Correction QEC Measure Operation Operation 1) Need for an evolution **Qubit sensitivity** FTQC means evolving from a Quantum systems are highly sensitive to their environment, physical qubit paradigm to a logical leading to errors in calculations. qubit one on the same hardware platform. 1) 0 0

Entangling multiple physical qubits to create a logical qubit.

Ancillary qubits

Ancillary qubits are measured to detect if errors have occurred, without disturbing the logical qubits' states

The logical qubit solution

Pasqal's approach to FTQC

Reset

Hold Control Atoms in a single register **OOL Solution Solu**

partnerships dedicated to FTQC

